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a b s t r a c t

State-of-charge (SoC) and state-of-health (SoH) define the amount of charge and rated capacity loss of a
battery, respectively. In order to determine these two measures, open-circuit voltage (OCV) and internal
resistance of the battery are indispensable parameters that are obtained with difficulty through direct
measurement. The motivation of this study is to develop an online, simple, training-free, and easily imple-
mentable scheme that is capable of estimating such parameters, particularly for the lithium-ion battery
eywords:
nternal resistance
pen-circuit voltage
tate-of-charge
tate-of-health

in battery-powered vehicles. Based on an equivalent circuit model (ECM), the electrical performance of a
battery can be formulated into state-space representation. Also, underdetermined model parameters can
be arranged to appear linearly so that an adaptive control approach can be applied. An adaptation algo-
rithm is developed by exploiting the Lyapunov-stability criteria. The OCV and internal resistance can be
extracted exactly without limitations of a system input signal, such as persistent excitation (PE), enhanc-

ity fo
he ca
daptive control
quivalent circuit model

ing the method applicabil
are established to verify t

. Introduction

Specific energy and power in addition to cycle life are pri-
ary concerns of batteries utilized in electric vehicles (EV). The

ithium-ion battery is believed to be able to potentially meet these
equirements in the future. Hence, several well-known types of
ithium batteries, such as lithium iron phosphate, lithium poly-

er, and nano-phosphate lithium-ion cells, have been developed.
n addition, their reliability and durability are very susceptible to
perational and environmental conditions, particularly in EV appli-
ations. To achieve the required EV traction power and range,
ow-voltage lithium-ion cells are generally connected in series
nd in parallel to construct a dedicated battery pack. A battery
anagement system (BMS), along with protective circuitry and
communication bus, is provided for management, monitoring,

nd diagnosis. Measurement of state-of-charge (SoC) is one of basic
unctions of the BMS, which indicates the remaining charge of the
attery so that the driver can be reminded to charge the battery
rior to its depletion. It is known that inaccurate SoC determina-

ion is likely to cause catastrophic situations such as overdischarge
r overcharge. In addition, state-of-health (SoH), which defines the
attery performance relative to its fresh condition, is used to predict

ts end-of-life and aging. In another application, SoH is a measure

∗ Corresponding author at: Rm. 200, Bldg. 58, 195, Sec. 4, Chung Hsing Rd.,
hutung, Hsinchu 31040, Taiwan. Tel.: +886 3 591 7756; fax: +886 3 582 0452.
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r vehicular power systems. In this study, both simulations and experiments
pability and effectiveness of the proposed estimation scheme.

© 2011 Elsevier B.V. All rights reserved.

used to analyze the effectiveness of the battery when incorporated
with other power sources, i.e., hybrid energy storage systems, in
order to extend battery cycle life. Generally, the SoH function is
uncommonly seen in existing BMS’s. However, there is an increas-
ing need to monitor the battery performance in EV applications so
as to prevent instant breakdown while driving.

Several methods for SoC determination have been proposed
since 1938 [1]. Such methods can be generally categorized as direct
or indirect approaches. One of the direct approaches simply indi-
cates the remaining capacity by using online current integration [2].
Some studies have improved the previous-demonstrated accuracy
by compensating for temperature and aging effects [3,4]. On the
other hand, the indirect methods determine the SoC by using the
battery’s intrinsic relationship between the SoC and some electri-
cal parameters such as open-circuit voltage (OCV) and impedance.
For instance, the battery OCV naturally declines proportionately
with the energy expenditure and is widely used for SoC indication
[5–7]. Relying on an impedance spectroscopy analysis, the SoC and
SoH can be accurately determined [8,9]. In recent years, the con-
cept of adaptive estimation based on neural networks [10,11] or
Kalman filtering [12,13] has been proven to be effective in SoC-
and SoH-determination problems.

The SoH indication of the battery has attracted growing atten-

tion in the last decade for automotive applications, e.g., EV or
hybrid EV (HEV). Typically, the SoH can be estimated through bat-
tery usage history or performance parameters. The usage history
might involve normal charge–discharge cycles and abusive expe-
riences, e.g., instances in which the operational limits of voltage,

dx.doi.org/10.1016/j.jpowsour.2011.01.005
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:acloud.c@gmail.com
dx.doi.org/10.1016/j.jpowsour.2011.01.005
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urrent, and temperature were exceeded. A data fusion technique
s utilized to integrate the aforementioned data for the estimation
f the remainder of battery lifetime. On the other hand, the bat-
ery aging also induces the loss of useful capacity and increase of
nternal resistance. The rated capacity measurement must apply a
ull charge–discharge process that is time-intensive and only suit-
ble for testing in a laboratory. Instead, the battery impedance
an be either directly analyzed by a spectroscopic instrument or
e estimated through the transient response. For instance, some
revailing methods have analyzed the battery voltage profile by
etecting the drop depth in a discharge operation [14,15] or sub-

ecting the battery to a specific load demand, such as that seen
uring engine cranking [16,17], in order to determine the SoH.
rior studies [9,18–20] have also demonstrated that the accuracy
f the SoH determination can be enhanced though a more elabo-
ated impedance analysis. By employing battery electrical models,
he internal resistance regarded as the low frequency impedance
an be estimated by exploiting a sliding-mode control technique
21], or an extended Kalman filter [12].

In fact, the applicability of the existing SoC or SoH determining
ethods could be confined to some specific types of batteries. For

xample, the internal resistance of lithium-ion battery is insensi-
ive to SoC variation within the range that is safe for use. Yet, the
oulomb counting or OCV measurements have no such limitation.
echnically, the OCV is generally measured when the internal ther-
al stability of the battery has been reached. To do this, the battery

hould be discharged to each SoC set-point and then rested for a
ong time prior to measurement. To enhance the efficiency of the
CV measurement, a statistical analysis based on the data obtained

rom a fast discharge–charge process in laboratory has been pre-
ented [22]. In practice, a complex spectroscopic analysis of battery
mpedance is unnecessary as long as the internal resistance can be
stimated instead. Furthermore, a prior study has illustrated how
o determine the capacity fade of battery by identifying parameter-
zed curves of the internal resistance with respect to the different

orking cycles based on a simple equivalent circuit model (ECM)
19]. In summation, the OCV and internal resistance parameters
llow for determination of the SoC and SoH, respectively.

In this study, a novel method for online estimating of lithium-ion
attery OCV and internal resistance simultaneously is presented.
his method is conceived under following requirements for EV
pplication: (1) online estimation, (2) simple mathematical opera-
ion, (3) no need of a specific load pattern or system excitation, (4)
o prior time-intensive training process, and (5) easy implementa-
ion. To this end, a model-based estimation scheme is developed
sing an adaptive control approach that is primarily utilized to
esign controllers for nonlinear or linear systems with uncertain-
ies. According to a simple ECM, the dynamics of a lithium-ion
attery is described in state-space formulation, and the estimated
arameters of the system appear linearly, which enables utiliza-
ion of adaptive control techniques. The persistent excitation (PE)
equired for assuring parameter convergence in an adaptive con-
rol system is shown to be relaxed so that the convergent time that
s required can be reduced. The proposed estimation system is the
nhancement of the previous work [23], which is concerned with
method of estimation for battery parameters.

. Mathematical battery model

Several existing battery models for characterizing battery

lectrochemical behavior have been constructed by using math-
matical approaches from either macroscopic or microscopic
erspectives. For microscopic models, partial differential equations
re entailed for modeling the electrochemical interaction between
wo electrodes and electrolytes in order to determine the battery’s
Fig. 1. A generalized ECM for lithium batteries.

effective capacity, current–voltage relationship, and heat gener-
ation [24,25]. However, such mathematical models are generally
complex and need a numerical method to solve the problems,
which are subject to initial and boundary conditions. On the other
hand, the electrical models that regard the battery cell as a lumped
system have been widely introduced to capture the dynamic char-
acteristics in terms of current and voltage in order to ease the
computation [26,27]. These have been demonstrated to agree with
the dynamical response in discharge or charge operation within the
order of 5% error, which is acceptable in terms of an engineering
viewpoint. Due to the lower amount of required computation rel-
ative to the microscopic models, they are capable of determining
the battery status online via the designed algorithm.

The electrical model described by a circuit that comprises the
basic elements, such as resistor, inductor, and capacitor, is called an
ECM. Those components are configured to properly match the mea-
sured impedance or transient response via system identification.
Typically, the architecture of the circuit is composed of a funda-
mental ohmic resistor and one or more RC networks connected in
series to simulate both the transient and steady responses of the
battery. In order to capture the nonlinear characteristics of the bat-
tery, the resistance of each identified resistor is usually a nonlinear
or piece-wise linear function with respect to SoC and tempera-
ture, depending on the types of batteries used. One of the ECMs
used to simulate cell performance is illustrated in Fig. 1, where
an ohmic resistor with resistance Rs, an RC network (Rt//Ct), and a
DC source with voltage voc (OCV) that is function of SoC are con-
nected in series. vb is defined as the battery terminal voltage and
ib is the outflow current. It should be noted that, for simplicity, the
above parameters are generally assumed to be independent of cur-
rent direction. In other words, there is no hysteretic behavior being
considered in Fig. 1. Accordingly, the impedance between the DC
source and positive terminal can be given as

z(jω) = Rs + Rt

jCtRtω + 1
(1)

where ω is the frequency of ib or vb. The parameters in Eq. (1) can
be identified through spectroscopic analysis, which is typically an
approach applied in a laboratory. Alternatively, it is more straight-
forward to use battery voltage, current, and temperature such that
an online estimation can be realized. To this end, the ECM is consid-
ered here for the development of an estimation algorithm. It is not
only applicable to the scale of a cell, but also to that of a pack. For
instance, a more precise ECM version with one resistor and three
RC networks in series was utilized for modeling a battery pack to
enhance battery modeling [28].

Using Kirchhoff’s law, the dynamics of the ECM shown in Fig. 1
can be expressed as

v̇c = − 1
CtRt

vc + 1
Ct

ib (2)

vb = voc − Rsib − vc (3)
where vc is defined as the voltage across the RC network, as seen
in Fig. 1, and cannot be determined because the voltage relating to
Rs is unknown. It can be seen that Eqs. (2) and (3) are the state-
space formulation, where vc can be regarded as an estimated state
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or an observer or Kalman filter design [12] as long as Rs, Rt, Ct, and
oc are previously known. However, this is not the case because all
he above parameters along with voc are still uncertain. In addi-
ion, more precisely, they should be variant with respect to SoC,
emperature (T), and usage history (h), i.e.:

= p(SoC, T, h), pT =
[

Rs Rt Ct voc
]

(4)

here p is a parametric vector with the inclusion Rs, Rt, Ct, and voc.
ll of the battery parameters in (4) vary slightly within 90–10% of

he SoC, implying that they can be estimated by any methodology
hat can account for such slowly varying behavior.

Because vc is neither a measurable variable nor an estimated
arameter following the above formulation, the removal of the vc

erm from Eqs. (2) and (3) is desired in order to facilitate the algo-
ithm derivation. To this end, one can differentiate vb in Eq. (2) to
ield:

˙ b = v̇oc − Ṙsib − Rsi̇b − v̇c = �(�oc)� − �(Rs)�ib − Rsi̇b − v̇c (5)

here the differential operator �(A) and vector � are defined as

(p) =
[

∂p

∂SoC

∂p

∂T

∂p

∂h

]
, �T =

[
∂SoC

∂t

∂T

∂t

∂h

∂t

]
.

ere, p is any parameter in p. It can be seen that the first two
erms on the right-hand side of Eq. (5) are generated by deriving
he higher-order dynamics of the battery in terms of the output
oltage vb. The complicated variation of a parameter is interpreted
s multiplication of the change of the parameter with a state (SoC,
, or h), and the change of the state with time. In addition, Eq. (5)
an be simplified with the following assumptions:

A1) Small battery energy is consumed or regained relative to
totally useful capacity. For example, a 40 Ah lithium-ion cell,
the basic energy requirement for a city-EV, is assumed to
conduct 1 C (40 A) discharge (generally less than this value
at most time). The variation of SoC with respect to time is
∂SoC/∂ t = − 40/(40 × 3600) = − 0.00028, which is very small,
i.e., ∂SoC/∂ t ≈ 0.

A2) The cell temperature must be monitored and controlled at a
predetermined level by a BMS in order to avoid a thermal run-
away problem and keep thermal stress as low as possible for
the longevity of the battery. Relying on the proper design of
a cooling system/heater, the cell temperature rise/decrease
should be slow. Hence, ∂T/∂ t ≈ 0 holds for normal operating
conditions.

A3) Note that h represents a long term usage history such as the
counts of working cycles or abuse. Thus, ∂h/∂ t ≈ 0 definitely
holds.

Accordingly, it follows that � ≈ 0, thereby Eq. (5) can be rewrit-
en as

v̇b ≈ −Rsi̇b − v̇c = −Rsi̇b + 1
CtRt

vc − 1
Ct

ib = −Rsi̇b − 1
Ct

ib

+ 1
CtRt

(voc − Rsib − vb)

= − 1
CtRt

vb − Rsi̇b − Rt + Rs

CtRt
ib + voc

CtRt

(6)

y substituting Eqs. (2) and (3) into Eq. (5). Obviously, the term vc

as been removed and a new variable i̇b obtained. Yet, i̇b can be
asily computed by the differential of measured ib.

. Main results
.1. Adaptive algorithm

According to Eq. (6), the dynamics of the battery is reinterpreted
n terms of vb. On the other hand, voc, i̇b, and ib are regarded as
ources 196 (2011) 3921–3932 3923

the system inputs multiplied by the coefficients 1/CtRt, Rs, and
(Rt + Rs)/CtRt, respectively, to give new parameters to be deter-
mined. Because the parameters in Eq. (6) appear linearly, it is
possible to employ an adaptive control approach that continuously
updates uncertain parameters before the tracking error approaches
zero. Recall that OCV is slowly varying within the battery’s use-
able capacity. The region between 10% and 90% of SoC is generally
unused in order to avoid the abusive conditions such as overcharge
and overdischarge. Hence, OCV is considered as one of the param-
eters such that Eq. (6) can be written as

v̇b = �T X (7)

where

�T =
[

�1 �2 �3 �4
]T =

[
Rs

Rt + Rs

CtRt

1
CtRt

voc

CtRt

]
,

XT =
[

−i̇b −ib −vb 1
]

.

Note that voc and 1/CtRt are coupled together to become one new
parameter. The estimated parameter vector in Eq. (7) is defined as

�̂
T =

[
�̂1 �̂2 �̂3 �̂4

]T =
[

R̂s

̂Rt + Rs

CtRt

̂1
CtRt

v̂oc

CtRt

]T

(8)

The corresponding predicted state v̂b is given as

˙̂vb = �̂
T
X̂ + u (9)

where

X̂
T =

[
−i̇b −ib −v̂b 1

]
and u is input designed for regulation.

The design of an adaptive control system is to let a controlled
state follow a reference signal. In our case, we expect that the track-
ing error of the predicted state can asymptotically tend towards
zero, i.e.:

lim
t→∞

e = lim
t→∞

(vb(t) − v̂b(t)) = 0. (10)

It is known that Eq. (10) is also necessary for the convergence of
the estimated parameters. By utilizing the technique used for the
design of the adaptive controller [29], an adaptation law of the
parameters can be developed.

Theorem. For a battery formulated in Eq. (7), its estimated
dynamics is given by Eq. (9), and the condition expressed by Eq.
(10) can be achieved by the adaptation law:

˙̂
� =

⎡
⎢⎢⎢⎣

˙̂�1
˙̂�2
˙̂�3
˙̂�4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

−g1 i̇be
−g2ibe
−g3v̂be

g4e

⎤
⎥⎦ (11)

together with the designed input:

u = �e (12)

where � is positive semi-definite, i.e.:

� ≥ 0,

and the adaptation gains are positive definite:

gi > 0, i = 1, 2, 3, 4.
Proof. Invoking the Lyapunov-based design procedure, consider
the Lyapunov function:

V(ṽb, �̃) = 1
2

e2 + 1
2

�̃
T ∑

�̃ (13)
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here ˙ is a positive definite matrix with proper dimensions. The
stimated error vector �̃ defined as the difference between actual
nd estimated parameters is

˜T = �T − �̃
T =

[
�̃1 �̃2 �̃3 �̃4

]
. (14)

Note that V is a positive-definite function constituted by
quadratic polynomial in e and �̃. Hence, if V monotonically

ecreases, Eq. (10) is achieved. It is sufficed that its derivative shall
e negative semidefinite. To this end, differentiating Eq. (13) along
he trajectory of the system, it follows that

V̇ = ∂V

∂ṽb

dṽb

dt
+ ∂V

∂�̃

d�̃

dt

= ėe + ˙̃�
T ∑

�̃

= (v̇b − ˙̂vb)e + (�̇T − ˙̂�
T

)
∑

�̃

= (�T X − �̂T X̂ − u)e + (�̇T − ˙̂�
T

)
∑

�̃

=
[
−�̃1 i̇b − �̃2ib − (�̃3 + �̂3)(e + v̂b) + �̂3v̂b + �̃4 − u

]
e

+(�̇T − ˙̂�
T

)
∑

�̃

=
[
−�̃1 i̇b − �̃2ib − �̃3v̂b + �̃4 − �3e − u

]
e + (�̇T − ˙̂�

T

)
∑

�̃

= (X̂T e − ˙̂�
T ∑

)�̃ − (�3e + u)e + �̇T
∑

�̃

= −(�3 + �)e2 + �̇T
∑

�̃

≈ −
(

1
	t

+ �
)

e2

≤ 0

(15)

rovided that

= �e, � ≥ 0,

˙̂ =

⎡
⎢⎢⎢⎣

˙̂�1
˙̂�2
˙̂�3
˙̂�4

⎤
⎥⎥⎥⎦ =

∑−1
eX̂ =

⎡
⎢⎣

−g1 i̇be
−g2ibe
−g3v̂be

g4e

⎤
⎥⎦

y letting
∑

= diag((1/gi) > 0, i = 1, 2, 3), and

˙ = �(�)� ≈ 0 (16)

s used in accordance with (A1)–(A3). Here 	t = CtRt is the polar-
zation time-constant with regard to battery relaxation behavior.
articularly, the designed gain � can be selected to be larger in
rder to dominate the convergent rate so as to shorten estimation
ime. By applying the LaSalle–Yoshizawa theorem [30] to Eq. (15),
q. (10) follows.�

.2. Convergence of parameters

Once �̂ converges to its actual value, each parameter can be
valuated via Eq. (8). It should be noted that Eq. (15) assures
symptotical stability of the state error e, rather than the esti-
ated parametric error �̃, as it is purposely cancelled to achieve

ufficient system stability. As a general shortcoming of an adaptive
ontrol system, the PE is typically needed to assure the parameter
tability where the PE is a type of design input needed to generate
ich enough data for system identification [31]. Because the battery
esponse is primarily determined by current command of the trac-
ion motor, the driving behavior may not produce a suitable current
attern to satisfy the PE. As a result, the estimated parameters may

ither take more time for convergence or become trapped at an
ncorrect equilibrium point. To evaluate the above problems, the
tability condition of state error e should be analyzed as it appears
n each term of the adaptation law (see Eq. (11)), i.e., the parameters
top updating as long as the state error approaches zero.
Sources 196 (2011) 3921–3932

It can be found from Eq. (9) that �̂1, when coupled with i̇b, makes
itself more sensitive to high dynamic operation, e.g., EV traction
as well as regeneration, in comparison with the other parameters,
implying that the convergent rate of �̂1 will be much faster than
those of the other parameters. As a consequence, the condition:

�̃1 ≈ 0 (17)

will be easily achieved in a short time. This phenomenon can be
observed in tentative simulations in the following section.

According to Eqs. (10) and (17), we have

lim
t→∞

(v̇b(t) − ˙̂vb(t)) = lim
t→∞

(�T X(t) − �̂
T
(t)X̂(t) − u(t))

= −i̇b(t) lim
t→∞

�̃1(t) − ib(t) lim
t→∞

�̃2(t)

−v̂b(t) lim
t→∞

�̃3(t) + lim
t→∞

�̃4(t) − (�3(t)

+�) lim
t→∞

e(t)

= −ib(t) lim
t→∞

�̃2(t) − v̂b(t) lim
t→∞

�̃3(t)

+ lim
t→∞

�̃4(t).

(18)

Eq. (18) should equal to zero when the stability condition has been
achieved, i.e.:

−ib(t) lim
t→∞

�̃2(t) − v̂b(t) lim
t→∞

�̃3(t) + lim
t→∞

�̃4(t) = 0. (19)

On the other hand, let Eq. (3) be multiplied by 1/CtRt on both
sides such that

vb

RtCt
= voc

RtCt
− Rs

RtCt
ib − 1

RtCt
vc ≈ voc

RtCt
− Rs + Rt

RtCt
ib. (20)

Consider a situation where the RC network in the ECM has a low
time-constant (	t = RtCt) such that it acts like a pure resistor, i.e.:

vc ≈ Rtib (21)

so as to make it possible to rewrite Eq. (20) as

−�2ib − �3vb + �4 ≈ 0. (22)

Multiplying Eq. (22) by the constant ˛ − 1 and then adding it to Eq.
(18) yields:

−ib(t) lim
t→∞

(˛�2 − �̂2(t)) − vb(t) lim
t→∞

(˛�3 − �̂3(t))

+ lim
t→∞

(˛�4 − �̂4(t)) ≈ 0. (23)

It is illustrated that the adaptation algorithm achieves Eq. (10)
and forces all estimated parameters to approach the values in pro-
portion to their actual values scaled by an unknown constant ˛,
i.e.:

lim
t→∞

�̂i(t) = ˛�i, i = 2, 3, 4, (24)

which is caused somehow by initial condition, driving pattern, and
adaptation gain design. Unfortunately, this is the case in both sim-
ulations and experiments, as will be illustrated in a later section.
Although actual values of the model parameter set are difficult to
obtain in a straightforward manner, it is possible to evaluate all
battery parameters other than the capacitance Ct. To see this, by
using Eqs. (17), (20) and (24) we have

⎡
R̂s(t)

⎤
⎡
⎢ �̂1(t)

ˆ

⎤
⎥

⎢⎣ R̂t(t)

v̂oc(t)

⎥⎦ =
⎢⎢⎢⎢⎣

�2(t)

�̂3(t)
− �̂1(t)

�̂4(t)

�̂3(t)

⎥⎥⎥⎥⎦
(25)
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Fig. 2. Scheme of SoC and SoH determ

here
[

R̂s R̂t

]T
and v̂oc can be used to determine SoH and SoC,

espectively.

.3. Implementation of SoC and SoH determination

The proposed estimation method provides online monitoring
f the battery’s internal resistance and OCV for the determination
f SoH and SoC, respectively. During the estimation procedure,
front-end process acquires current, voltage, and temperature

ia direct measurements. These signals or data may contain mea-
uring noise such that a filtering process might be necessary to
mprove the estimation reliability. Later, the filtered data are sent
o the developed estimation process for extracting battery internal
esistance and OCV. The fact that the internal resistance gradually
ncreases as the battery decays can be used to convert the estimated
esistance data to a human-sense unit such as battery age or healthy
atio. On the other hand, the OCV curve, which decreases propor-
ionately with the battery’s usable energy, is used to determine the
oC. In addition, the battery’s working temperature effects on the
lectrical characteristics shall be considered in the above SoC and
oH conversions. In order to reduce the estimation susceptibility
o the measuring precision or disturbance, a filter with high band-
idth is introduced to process the estimated parameters prior to

he conversion. A detailed scheme for the SoC and SoH determina-
ion is illustrated in Fig. 2. The relevant processes are summarized
s follows.

. Measurement: A BMS typically provides cell voltage and temper-
ature monitoring by integrating dedicated measuring modules.
Battery terminal voltage can be obtained by summing the cell

voltages in series. A Hall-effect current sensor is deployed in the
series loop for current management. Relying on the general BMS,
the data requested for the estimation are acquired.

. Filter 1 and filter 2: The bandwidth of the filter 1 shall be properly
chosen to filter out only measurement noise without eliminat-

able 1
attery parameters and adaptation gains.

Group Symbol Simulation 1

Battery
parameters

voc (V) 12.6
Rs (m
) 0.1
Rt (m
) 0.05
Ct (F) 5

Adaptation
gains

� 0.2
g1 0.001
g2 0.005
g3 0.05
g4 1

a The OCV is varying with the change of the capacity. The value shown here represents
b The ohmic resistance is measured by an impedance measuring instrument as its actu
n based on adaptive control approach.

ing battery dynamics. However, the time constant of the filter 2
should be selected to be sufficiently large to enhance the robust-
ness of the estimation against measuring disturbance. Also, the
parameters of the filters are initially configured and held invari-
ant.

3. Battery model: The ECM given by Eqs. (2) and (3) is reformulated
into Eq. (7). It is assumed that Eq. (7) can catch dynamics of bat-
teries used for EV applications and can be observed by Eq. (9)
along with the estimated parameter vector Eq. (8).

4. Adaptive algorithm: The adaptation law given by Eqs. (11) and
(12) is processed to update the estimated parameters.

5. Parameter extraction: The internal resistance and OCV are
extracted via Eq. (25).

6. SOC and SOH determination: The lookup tables define data map-
pings between battery parameter and working status models in
consideration with thermal effect. They are made through long-
term tests in a laboratory or possibly provided by battery makers
for such application.

4. Simulation and experimental results

The simulations and experiments are performed to validate the
effectiveness of the proposed method on the estimation of bat-
tery internal resistance and OCV. Two simulations established in
Simulink are used to verify the capability of determining the param-
eters in ECM accurately. The OCV is set to be fixed and slowly
varying with respect to SoC in Simulations 1 and 2, respectively.
Furthermore, two EV battery packs constructed from different
types of lithium cells for a light EV [32] are utilized in two exper-
iments to justify the applicability. To mimic a scenario in which

the battery pack supplies motive power to the light EV running
in an urban area, the American FTP-75 driving cycles are adopted
to generate the demanded power pattern by means of ADVISOR, a
vehicle simulator. Automated cell-test equipment commands the
attached battery pack to discharge or charge following a power

Simulation 2 Experiment 1 Experiment 2

12.6a 70.7a 69.3a

0.1 76.82b 10.22b

0.05 – –
5 – –

0.2 0.4 0.4
0.001 0.001 0.0004
0.005 0.5 0.5
0.05 0.8 0.8
1 1 1

its initial state in simulation or experiments.
al value.
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The resulting internal resistance and OCV are depicted in Fig. 5 and

F
i

ig. 3. Measurements and estimated state error in Simulation 1: (a) terminal battery
oltage, (b) battery outflow current, and (c) estimated state error.

attern in a laboratory. The voltage and current of the battery pack
re measured via the equipment and recorded in its remote PC.
ecause the scheme works in an open-loop manner, the estima-

ion process can be performed offline without loss of reality. To
his end, the recorded data are loaded into the Simulink environ-

ent to simulate the real estimation condition. In the following
imulations and experiments, the measured states are battery

0 50 100 150
0

0.05

0.1

0.15

0.2

Time / s

θ 1
θ 3

0 50 100 150
2

3

4

5

6

Time / s

a b

c d

ig. 4. Trajectories of estimated parameters in Simulation 1: (a) �1, (b) �2, (c) �3, and (d)
nterpretation of the references to color in this figure legend, the reader is referred to the
Sources 196 (2011) 3921–3932

working voltage vb and current ib. The estimated battery volt-
age v̂b is produced by the ECM with estimated model parameters
�̂i, i = 1∼4 as well as the measured current. The primary estimated
state for SOC is OCV v̂oc, and the primary estimated parame-
ters for SOH are internal resistance R̂s and R̂t . v̂oc, R̂s, and R̂t can
be extracted from the model parameters. The system parame-
ters required for the simulations and experiments are specified in
Table 1.

4.1. Simulation 1

The objective of this simulation is to verify the accuracy of
the proposed method when estimating the internal resistance
and OCV. A battery exactly described by Eqs. (2) and (3) is
assumed to discharge and charge subject to a random load as
depicted in Fig. 3(a). The load voltage is equal to the battery
terminal voltage and determines the current profile as shown
in Fig. 3(b), where the positive value denotes outflow current.
The estimated parameters are initially set at �̂1(0) = R̂s(0) = 0.2 
,
�̂2(0) = ̂(Rt + Rs)/CtRt(0) = 0.01 F−1, �̂3(0) = ̂1/CtRt(0) = 6 s−1, and
�̂4(0) = ̂voc/CtRt(0) = 40 V s−1. The trajectory of the estimated error
is depicted in Fig. 3(c) and converges to zero within 10 s. The esti-
mated parameters and their actual values are depicted in Fig. 4,
where the blue and black lines denote the actual and estimated val-
ues, respectively. It can be found that only �̂1 agrees with the actual
value of 0.1 
, reflecting the observation made in Eq. (17), and the
others stop updating after the convergence of the estimated error.
both tend to their actual values within 40 s despite the accuracy and
traces of the estimated parameters. This demonstrates the effec-
tiveness of the proposed method when applied to the ECM along
with the invariant parameters.
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�4; the blue and black lines denote actual and estimated values, respectively. (For
web version of the article.)
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ig. 5. Estimated internal resistance and OCV in Simulation 1: (a) Rs , (b) voc, and (c)
t .

.2. Simulation 2
A ECM where the OCV is monotonically varying throughout the
ntire operation is considered in this simulation. Other than the
CV, the parameters and their initial values are invariant, simi-

ar to the ones set in Simulation 1. A random load profile used to
xcite the system is also the same and is depicted in Fig. 6(a). Due
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nterpretation of the references to color in this figure legend, the reader is referred to the
Fig. 6. Measurements and estimated state error in Simulation 2: (a) terminal battery
voltage, (b) battery outflow current, and (c) estimated state error.

to the rise of the OCV, the battery supplies more and regains less
current during the discharge and charge operations, respectively,
as depicted in Fig. 6(b) when comparison with Fig. 3(b). It can be

observed from Fig. 6(c) that the estimated error converges to zero
within 10 s. The estimated parameters are depicted individually in
Fig. 7 for comparison to their actual values, and the following brief
conclusions are drawn.
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ig. 8. Estimated internal resistance and OCV in Simulation 2: (a) Rs , (b) voc, and (c)
t .

(i) The estimated ohmic resistance identical to �̂1 converges to its
actual value as fast as the case in Simulation 1, as shown in
Fig. 7(a). It is evident that the condition set forth in Eq. (17) is

true in either two cases.

ii) Comparatively, the other estimated parameters, �̂2∼�̂4, diverge
from the actual profiles as illustrated in Fig. 7(b)–(d). How-
ever, the resulting internal resistance and OCV still tend to
their actual values after 10 s as shown in Fig. 8(a)–(c). It can
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Fig. 9. Measurements and estimated state error in Experiment 1: (a) terminal bat-
tery voltage, (b) battery outflow current, and (c) estimated state error.

be inferred from Figs. 7 and 8 that the multiplier ˛ is varying
during the entire process, rather than being held constant as in
Simulation 1.
Simulations 1 and 2 verify the proposed method based on the
assumptions (A1)–(A3) and can accurately estimate the internal
resistance and OCV of the battery that can be exactly modeled by
Eqs. (2) and (3).
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s , (b) voc, and (c) Rt .

.3. Experiment 1

Practically, the ECM employed here is simplified to reduce the
rder of model complexity and facilitate the development of the
stimation algorithm. The accuracy affected by unmodeled dynam-
cs should be investigated by using a real battery. To this end,
ithium iron phosphate cells are connected in series to reach a nom-
nal voltage of 70 V to fulfill the voltage requirement of a light EV.
n experiment is established to let the automated cell-test machine
anage the discharge and charge operation in accordance with

he converted power pattern. Meanwhile, the ambient tempera-
ure of the battery pack is managed by an air conditioner to remove
he accumulated heat within the cells during operating. Thus, the
ells’ temperatures would appear in slowly varying manner so as
o meet the assumption (A2). Throughout one cycle of the FTP-75,
he battery voltage and outflow current are depicted in Fig. 9(a)
nd (b), respectively. The voltage fluctuates between 73 and 64 V
nd the maximum discharge/charge current varies up to 95/40 A.
he initial values for the estimated parameters are �̂1(0) = 0.1 
,

ˆ2(0) = 20 F−1, �̂3(0) = 100 s−1, and �̂4(0) = 7067.2 V s−1. As illus-
rated in Fig. 9(c), the tracking error converges to zero after 5 min.

ith proper gain selection and prior knowledge of initial paramet-
ic values, faster convergence can be achieved. The trajectories of
he estimated parameters are depicted in Fig. 10(a)–(d). As shown
n Fig. 10(a)–(c), the parameters �̂1, �̂2, and �̂3 converge to steady
alues of 0.063, 7.5, and 100.5, respectively, with small fluctuations.
nlike the others, the parameter �̂4 follows a descending manifold,
s illustrated in Fig. 10(d), as the OCV drops as a function of the
ecrease of battery stored energy.

The resulting internal resistance and OCV are depicted in Fig. 11.
he ohmic resistance trajectory equals to the parameter �̂1, as
hown in Fig. 11(a). The polarized resistance tends to 0.01 
 and
he OCV descends slowly from its initial value of 70.75 to 70.15 V
t the end of the process. In order to enhance the reliability of SoC
nd SoH determination, the estimated internal resistance (R̂s + R̂t)

nd OCV are processed through the filter 2 to become smooth, as
hown in Fig. 12. R̂s + R̂t , regarded as low frequency impedance that
s approximated as 75 m
, is close to 76.82 m
, the value obtained
ia an impedance measuring instrument, as shown in Table 1. It is
hown in Fig. 12(b) that the estimated OCV declines slowly in the
Fig. 12. Filtered estimated internal resistance and OCV in Experiment 1: (a) internal
resistance and (b) OCV.

process except for the first 5 min of the adaptation process. The
accuracy analysis of the OCV estimation will be verified in the next
experiment.

4.4. Experiment 2

A lithium polymer battery pack is constructed to reach a nomi-
nal voltage of 68 V and a higher energy density than the one used in
the first experiment in order to investigate the compatibility of the
proposed method with the different types of EV batteries. Again, the
battery pack is managed to discharge and charge in accordance with
the same power profile and thermal environment used in Experi-
ment 1. The estimated parameters are initially set at �̂1(0) = 0.05 
,
�̂2(0) = 15 F−1, �̂3(0) = 100 s−1, and �̂4(0) = 6875 V s−1. The bat-
tery working voltage, current, and estimated error are depicted in
Fig. 13. The voltage fluctuates between 70 and 65 V and its range is
larger than that of the pervious battery pack due to their different
electrochemical properties. The estimated error has been attenu-
ated to near zero after 450 s. The estimated parameters depicted in
Fig. 14 have trajectories similar to those in Simulation 2. It is noted
in Fig. 14(a) and (b) that the parameters tripped off their steady val-
ues at the end of the process. As shown in Fig. 13, between 1,300 and
1,350 s, the voltage spikes and outflow current have the same side,
which disagrees with the normal voltage–current behavior because
the internal resistance would cause excess voltage drop/bounce on
the discharge/charge operation. This fault might be caused by a
measurement or data transmission error that can be regarded as a
disturbance. The resulting ohmic resistance, OCV, and polarization
resistance are plotted in Fig. 15(a)–(c), respectively. It can be shown
that the disturbance affects the estimated internal resistance more
than the OCV. R̂s + R̂t and estimated OCV processed through the fil-
ter 2 are shown in Fig. 16. After 450 s, R̂s + R̂t converges to a steady
value of 20 m
, and the estimated OCV approaches a declined man-
ifold. Also, the robustness of the proposed scheme is improved by

examining the R̂s + R̂t curve at approximately 1,320 s. In actual-
ity, the internal resistance measured by the impedance measuring
instrument is 10.22 m
, as shown in Table 1, and is close to the
estimated ohmic resistance rather than low frequency impedance.
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ig. 13. Measurements and estimated state error in Experiment 2: (a) terminal
attery voltage, (b) battery outflow current, and (c) estimated state error.
For the comparison with actual OCV at the beginning of estima-
ion process, the parameters are initially set to be equal to those
btained from the previous results, i.e., �̂1(0) = 0.01 
, �̂2(0) =
F−1, �̂3(0) = 100 s−1, and �̂4(0) = 6882.6 V s−1. By reusing the bat-
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tery voltage and current data, the estimated OCV with respect to
depth of discharge (DoD) after the filtering process is depicted in
Fig. 17. On the other hand, the actual OCV is measured after a pro-
cess in which the battery pack is discharged with a low current of
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ig. 17. Comparative results of estimated and actual OCV with respect to DOD.

A until the 2% DoD is met and then rested for 30 min. This pro-
ess is repeated four times, and the measured voltage is plotted in
ig. 17 by a solid line. The actual OCV at the 2%, 4%, 6%, and 8% DoD
re indicated in comparison with the estimated ones. It is found that
he maximum estimated error is ±0.1 V in OCV or ±0.5% in DoD (or
oC). The overall estimated error for the lithium polymer batteries
ithout considering thermal effect is about ±1% SoC at maxi-
um, by adding maximum estimation discrepancy (±0.1 V OCV)

t the same SoC (seeing the estimated OCV curve at 3.3% DoD in

ig. 17).

The capability of the proposed scheme, according to the
imulation and experimental results are summarized as
ollows.

[

[

ources 196 (2011) 3921–3932 3931

(i) For a battery exactly modeled by the ECM shown in Fig. 1, the
proposed method can be performed online and can accurately
estimate the internal resistance and OCV.

(ii) For an EV battery pack constructed by either lithium polymer
or lithium iron phosphate type of cells, the proposed scheme
can be performed online and can reliably estimate the ohmic
resistance, polarized resistance, and OCV with a small error so
as to determine the SoC and SoH.

(iii) The proposed scheme is robust to the disturbance caused by
measuring or data transmission error.

5. Conclusions

In this study we proposed a technique for identifying battery
internal resistance and OCV regarding SoH and SoC determination,
respectively. Based on an ECM simply composed of one resistor
and one RC network connected in series to capture the essential
dynamics of a lithium-ion battery, an online estimation method of
the model parameters is developed by using an adaptive control
approach that has been widely applied to nonlinear control sys-
tems with parameter uncertainties. The adaptation law is devised
to assure that estimated state error asymptotically decreases to
zero by invoking the Lyapunov stability criteria. It is demonstrated
that the internal resistance and OCV can be accurately extracted
from the estimated parameters once the estimated state error tends
to zero. Hence, the PE condition demanded to assure the asymptot-
ical stability of the parameters in the adaptive control system can
be relaxed so that the convergent performance of the estimated
internal resistance and OCV is enhanced. Particularly, two filters are
conceived to mitigate measurement noise as well as disturbance so
as to improve the reliability. The simulations and experiments are
both performed to demonstrate that the accurate and robust esti-
mations of the internal resistance and OCV can be achieved. Due to
the simplicity of the proposed scheme, it can be easily implemented
via electronic circuit design or embedded system programming.
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Design, John Wiley & Sons, 1995.
31] K.S. Narendra, A.M. Annaswamy, International Journal of Control 45 (1) (1987)
127–160.

32] W.Y. Sean, Y.H. Chiang, C.H. Wu, Y.C. Liang, J.C. Ke, S.M. Lo, The 25th Interna-
tional Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition,
2010.


	Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles
	Introduction
	Mathematical battery model
	Main results
	Adaptive algorithm
	Convergence of parameters
	Implementation of SoC and SoH determination

	Simulation and experimental results
	Simulation 1
	Simulation 2
	Experiment 1
	Experiment 2

	Conclusions
	References


